心肌缺血吃什么药最好| vdr是什么意思| 昙花什么时候开花| 梦见兔子是什么预兆| 代糖是什么东西| 腹股沟疝气挂什么科| 牙垢是什么| 为什么排卵期会出血| 什么是次数| 抛锚是什么意思| 心脏在乳房的什么位置| 人体最大器官是什么| 血尿是什么原因引起的男性| 止血敏又叫什么| sparkling是什么意思| 痢疾吃什么药效果最好| 阿莫西林有什么副作用| 颈椎病是什么原因引起的| 什么是叶黄素| 属鼠的幸运色是什么颜色| 梦到涨大水预示着什么| 子宫痒是什么原因| 怀孕初期不能吃什么| 筛子是什么意思| 鳞状上皮炎症反应性改变是什么意思| 什么情况下能吃脑络通| aigle是什么牌子| 咽炎有什么症状| 心机重的人弱点是什么| 堃读什么| 泰坦尼克号女主角叫什么| 为什么指甲会凹凸不平| 男人眉毛长代表什么| 乳房胀痛是什么原因| 慌张的近义词是什么| 诸葛亮老婆叫什么名字| 眼睛皮痒是什么原因| 打摆子什么意思| 女性阴毛变白是什么原因| 彻底是什么意思| 一桌餐是什么意思| 锦衣夜行什么意思| 做梦梦见下大雨是什么意思| 膀胱钙化是什么意思| 身体痒是什么原因| 蛇喜欢吃什么食物| 男人交生育保险有什么用| 思利及人是什么意思| 医院面试一般会问什么| 不除外是什么意思| 气血虚是什么意思| 月经是黑色的是什么原因| 吃什么利尿最快| 大姨妈很多血块是什么原因| 七夕节干什么| 12月7号是什么星座| 左手发麻是什么原因| 拔牙后注意什么| 虾不能和什么一起吃| 为什么生日不能提前过| 皮脂腺痣是什么原因引起的| 4月28日是什么日子| 什么的长城| 什么体质人容易长脚气| 拜土地公时要念什么好| 双喜临门是什么生肖| 白带发黄用什么药| 漪什么意思| 唐僧姓什么| 三伏贴能治什么病| caring什么意思| 三七粉有什么作用| 统招是什么意思| 闪光眼是什么症状| 榴莲什么人不适合吃| 什么叫遗精| 掉头发是什么原因男性| 宝石蓝是什么颜色| 退而求其次什么意思| 梦见好多蚊子是什么意思| 吃什么代谢快有助于减肥| 舌苔是什么东西| 哺乳期可以吃什么消炎药| 黄水病是什么病| 肝内脂质沉积是什么意思| 菁字五行属什么| 血糖高初期有什么症状| 小蓝瓶是什么| 室上性早搏是什么意思| 嘴唇溃疡是什么原因| 不长毛的猫叫什么名字| 隐晦是什么意思| 梦见吃梨是什么意思| 血栓是什么病| 都有什么水果| 什么桥下没有水| 肝内钙化灶什么意思| 突然晕倒是什么原因造成的| 鸽子咳嗽吃什么药最好| 什么是中医学| 体会是什么意思| 小麦淀粉可以做什么| 贡中毒有什么症状| 什么对眼睛好| 79年的羊是什么命| 多梦吃什么药效果最好| 今年天热的原因是什么| 左氧氟沙星氯化钠注射作用是什么| 血小板偏低是什么原因| 颈动脉硬化有什么症状| 皮疹是什么| 督察是什么意思| 雷锋属什么生肖| 灰菜有什么功效与作用| 崽崽是什么意思| 无为而治什么意思| 心慌胸闷是什么原因| 十月30号是什么星座| 血常规是检查什么的| 六月是什么生肖| 子宫薄是什么原因造成的| 全身皮肤痒是什么原因| 130是什么意思| 乾元是什么意思| 膝盖凉是什么原因| 孩子嗓子有痰吃什么药| 肝不好有什么症状| serum是什么意思| 喝酒前吃什么保护胃| 侵犯什么意思| 祸水什么意思| 原生家庭什么意思| 涤纶是什么布料| 孤辰寡宿是什么意思| 虎皮羊质是指什么生肖| 下午5点到7点是什么时辰| 蓝莓什么时候开花结果| 两什么三什么| 梦见铲雪预示着什么| 吃什么可以壮阳| 半夜醒来睡不着是什么原因| 同比什么意思| 日柱将星是什么意思| 温暖的近义词是什么| 软骨炎是什么病| 未扪及是什么意思| 影响是什么意思| 龚是什么意思| 满血复活是什么意思| 1217是什么星座| 什么是全麦面包| 鱼肝油又叫什么名字| 什么是忧郁症| 爱无能是什么意思| 地皮菜是什么菜| 四维彩超什么时候做| 妇科臭氧治疗的作用是什么| 杭州有什么景点| 为什么总是长口腔溃疡| 颈管细胞有是什么意思| bally属于什么档次| 独在异乡为异客是什么节日| 为什么脚底会脱皮| 酒干倘卖无是什么意思| 什么叫阳性| 什么叫护理| 英寸是什么单位| 正值当年什么意思| 蛇蝎心肠是什么生肖| 石蜡是什么东西| 为什么腋下会长小肉揪| 心重是什么意思| 化疗是什么| 血小板减少会出现什么症状| cip是什么| 扶正固本是什么意思| 孕期感冒可以吃什么药| 上午十点是什么时辰| 不想长胡子有什么办法| 支气管炎吃什么药最好| 大头鱼吃什么食物| lake是什么意思| 经常低血糖是什么原因| 1996年属鼠五行属什么| 白巧克力是什么做的| 身上经常出汗是什么原因| bn是什么颜色| 肠系膜淋巴结是什么病| 为什么会有跳蚤| 吃皮是什么意思| 射精什么意思| 夏至吃什么好| 心脏呈逆钟向转位什么意思| 骨密度z值是什么意思| 黄瓜敷脸有什么效果| 肾阳虚有什么症状男性| 羊肉炖什么好吃| 浆水是什么| 蜂王浆什么时间吃最好| 尿潴留是什么病| 3月27日什么星座| 上海月薪三万什么水平| 一什么野花| 心口疼挂什么科| 浊气是什么| 1993属什么生肖| 孕早期吃什么水果好| 老是流眼泪是什么原因| 无以言表什么意思| 皮肤瘙痒用什么药| 血常规能查出什么| 怀孕的人梦见蛇是什么意思| 补肾壮阳吃什么好| 安陵容为什么叫安小鸟| 女人喝什么茶最好| 考试穿什么颜色最吉利| 秋天吃什么| 排卵期过后是什么期| 小孩子头发黄是什么原因| 隔离霜有什么作用| 血脂高有什么危害| 晚上为什么不能剪指甲| 6.5号是什么星座| 牙齿像锯齿是什么原因| 足石念什么| 草字头一个辛读什么| 肠胃功能紊乱吃什么药| 白粉病用什么药| 病毒性结膜炎用什么眼药水| 死侍是什么意思| 2.26是什么星座| mj是什么单位| 手痒是什么原因| 痔疮和肛周脓肿有什么区别| 9527是什么意思| 伊拉克是什么人种| 弹力棉是什么面料| 1979年什么命| 622是什么星座| 梦见钱是什么预兆| 病毒性结膜炎用什么眼药水| 骨刺吃什么药| 洁癖什么意思| 腋下有疙瘩是什么原因| 大红袍属于什么茶类| 胆红素偏高有什么危害| 抑郁吃什么药可以缓解情绪| 卡针是什么| 耳朵长疙瘩是什么原因| 领结婚证需要准备什么| 红色加蓝色等于什么颜色| 南京区委书记什么级别| 宝宝说话晚是什么原因造成的| 年柱将星是什么意思| pb是什么| c肽是什么意思| 人流是什么| 不字五行属什么| 什么是五常大米| 震撼的意思是什么| 怀孕初期分泌物是什么样的| 手关节疼痛是什么原因| 什么叫疝气| 米酒是什么酒| 百度

武警西藏总队组织预备特战队员开训

New features/Highlights v25.06

Summary

百度 FernandoCzyz在推特上写道:伊卡尔迪已经收到了第一份离开国米的正式邀请:切尔西奉上了6300万欧元的首次报价,且暂未定转会费上限。

25.06 release brings new functionality to curate and train DoMINO at scale on custom data and validate against physics-based benchmark suite for external aerodynamics.

Features and Enhancements

  • New version of DoMINO NIM with improved accuracy across different vehicle classes. Details.

  • Customizable validation benchmark for evaluating AI models against physics-based quantities for external aerodynamics. Details.

  • 10x faster end to end training recipe for DoMINO. Details

  • 25x speedup in training CorrDiff model for downscaling. Details.

Recipes and Examples

  • New training sample for structural mechanics domain to train surrogate to simulate small deformations using MeshGraphNet. Details.

  • New training sample for large-scale flood dynamics modeling using a physics guided GNN with Kolmogorov–Arnold Networks (KANs). Details.

  • Reference workflow using DoMINO NIM for initializing solvers to accelerate very high fidelity simulations. Details.

Notes

  • Starting 25.06, PhysicsNeMo container has implemented a pip constraints file at /etc/pip/constraint.txt. This file specifies the versions of all python packages used during the PhysicsNeMo container creation and is included to prevent unintentional overwriting of any of the project’s dependencies. To install a different version of one of the packages constrained here, the file /etc/pip/constraint.txt within the container must be modified. Simply remove the version constraints for any packages that you want to overwrite, keeping in mind that any other versions than those specified in the constraint file have not been fully tested in the container.

New features/Highlights v25.03

New Network Architectures

  • External aerodynamics application

    • DoMINO architecture - a local, multi-scale, point-cloud based model architecture for large-scale physics problems

    • DoMINO Automotive Aero NIM that is pretrained on wide range of roadside vehicle geometries

  • Earth-2

    • Stormcast architecture - generative diffusion model?architecture that can autoregressively predict at km scale conditioned on synoptic variables to emulate convection-allowing models?(CAMs)

Features and Enhancements

  • Unified distributed interface

  • CorrDiff usability improvements with more guidelines on custom corrdiff training, tuning and evaluation

Recipes and Examples

  • DoMINO training recipe for custom training of external aerodynamics model

  • ReGen AI showcases Gen-AI based data fusion, in-filling and assimilation of multi-modal observation data from weather stations or satellites,

  • Data Center sample

  • Airfoil sample

New features/Highlights v24.12

New Network Architectures

  • External aerodynamics application:

    • FigConvNet architecture

  • Earth-2

    • New generative AI model architecture called StormCast to emulate Convection-allowing models

Recipes and Examples

  • XAeroNet training recipe - uses Halo regions to scale MeshGraphNet and UNet models.

  • CorrDiff training recipe to train the model on HRRR dataset for CONUS

New features/Highlights v24.09

New Network Architectures

Features and Enhancements

Recipes and Examples

New features/Highlights v24.07

New Network Architectures

  • A graph neural network model with temporal multi-head attention for transient physics, demonstrated on the vortex shedding example.

Features and Enhancements

  • Warp based geometry utility for handling STL inputs.

  • Generalized accelerated dataloader for VTK files.

  • Mesh processing features supporting OBJ & VTP files.

Recipes and Examples

New features/Highlights v24.04

Features and Enhancements

  • ClimateDatapipe: an improved datapipe for HDF5/NetCDF4 formatted climate data.

  • Warp neighbor search routine with minimal example.

  • Performance optimizations to CorrDiff: Utilizing asynchronous I/O, torch.compile, AMP, and batched inference.

  • Custom Group Norm implementation to be compatible with channels last memory format in Modulus’ SongUNet architecture.

Recipes and Examples

New features/Highlights v24.01

Feature Enhancements

  • Distributed Utilities Improvements:

    • Upgrades to distributed utilites to facilitate novel model parallel strategies.

    • Configuration structure for models to describe their parallelization group structure.

    • DistributedManager utility to instantiate process groups based on a model’s process group config.

    • Helper functions to facilitate distributed training with shared parameters using gradient reduction hooks.

    • Improved usage of GraphPartition, with more flexible ways of defining a partitioned graph for distributed GNNs.

Recipes and Examples

New features/Highlights v23.11

Modulus container is now supported on aarch64 architecture.

New Network Architectures

  • Support for Diffusion model architectures that include DDPM++, NCSN++, and ADM.

Training Features

  • Introducing diffusion modeling framework to explore and experiment with different diffusion models and sampling strategies.

  • New distributed FFT utility and updates to DistributedManager utility to better handle process groups

New features/Highlights v23.09

This is a minor release with bug fixes and some minor updates

  • Updated Model checkpointing (with new ‘.mdlus’ save type) saves models arguments and version allowing for easier deploment and version control

  • Data download scripts to fetch ERA5 data from CDS api. This allows users to train models such as AFNO or Graphcast.

New features/Highlights v23.08

Training Features

  • Added support for PyTorch 2.0

  • Added support to CUDA 12.0

  • Added support to Python 3.10

Recipes and Examples

  • External Aerodynamics sample using GNNs to predict drag over an Ahmed body geometry

  • Global weather prediction using DLWP model

New features/Highlights v23.05

New Network Architectures

  • Support for GNNs starting with MeshGaphNet and GraphCast models.

  • Support for Convolutional RNN-based models.

Training Features

  • Modulus has been rearchitected into modules:

    • Modulus Core is the base module that consists of the core components of the framework for developing Physics-ML models

    • Modulus Sym provides an abstraction layer for using PDE-based symbolic loss functions

    • Modulus Launch provides optimized training recipes for data driven Physics-ML models

  • Expanded feature set for AI weather and climate models applications

    • SOTA models including : FourCastNet and GraphCast

    • Climate and weather model skill evaluation metrics

    • Optimal training recipes with efficient ETL pipelines for loading weather datasets using NVIDIA DALI.

  • Fast utilities and kernels for producing training data on-the-fly using NVIDIA’s Warp library.

  • Cugraph-Ops (Nvidia’s GNN library of highly optimized and performant primitives) support for GraphCast that reduces the training time by 30% compared to DGL.

Recipes and Examples

  • GraphCast for global weather prediction

  • MeshGraphNet for parameterized vortex shedding

  • 2D and 3D Convolutional RNNs for fluid flow and reaction-diffusion applications

  • Darcy flow FNO example with NVIDIA Warp datapipe.

  • Darcy flow Nested FNO training example in Modulus launch.

New features/Highlights v22.09

New Network Architectures

  • Generalized Neural Operators: Extended Fourier Neural Operator (FNO) and DeepONet to support compatibility with other built in Modulus Sym networks. FNO can now use any point wise network inside of Modulus Sym for its decoder. DeepONet can now accept any branch/trunk net.

  • Model parallelism has been introduced as a beta feature with model-parallel AFNO. This allows for parallelizing the model across multiple GPUs along the channel dimension.

  • Support for the self-scalable tanh (Stan) activation function is now available.

Training features

  • Criteria based training termination: APIs to terminate training based on the convergence criteria like total loss or individual loss terms.

  • Utilities for Nondimensionalization: Nondimensionalization tools are now provided in Modulus Sym to help users properly scale their system’s units for physics informed training.

  • Causal weighting scheme: Causal weighting scheme by reformulating the losses for the residual and initial conditions for better convergence in case of transient problems.

  • Selective Equations Term Suppression: Allows creation of different instances of the same PDE and freeze different terms to improve convergence on stiff PDEs in physics informed training.

Performance Enhancements

  • FuncTorch Integration: Modulus Sym now supports FuncTorch gradient calculations (A Jax like paradigm) for faster gradient calculations in physics-informed training.

Documentation Enhancements

  • More example-guided workflows for beginners and Jupyter notebook based getting started example.

  • Enhancements to Modulus Sym Features section to serve as a user guide.

New features/Highlights v22.07

New Network Architectures

  • Generalized DeepONet architecture: DeepONet in Modulus Sym is restructured so that it can easily be applied to data-informed and physics-informed 1D/2D problems with any arbitrary network architectures as the backbone.

  • FourCastNet: FourCastNet, short for Fourier ForeCasting Neural Network, is a global data-driven weather forecasting model that provides accurate short to medium range global predictions at \(0.25^{\circ}\) resolution. In the current iteration, FourCastNet forecasts 20 atmospheric variables. (Paper)

Training features

  • L2-L1 Loss Decaying: A L2 to L1 loss decay is now supported. This feature allows users to slowly transition between a L2 loss and L1 loss during training. This can improve training accuracy since decaying to an L1 loss can help reduce the impact of outlier training points with unstable loss values. This can be particularly useful for problems with singularities and sharp gradient interfaces.

Performance Enhancements

  • Meshless Finite Differentiation: Modulus Sym now includes a new approximate differentiation approach for physics-informed problems based on finite difference calculations. This new method allows for the computational complexity of training to be dramatically decrease compared to the standard automatic differentiation approach. For some examples this can yield upto 4x speed up in training time with minimal impact on accuracy. This feature is in beta and subject to change with improvements in the future.

  • Dataset Refactor: Both map style PyTorch datasets and iterable style datasets are supported inside of Modulus Sym for both physics based and data-driven problems. This includes built in functionality for multithreading workers and data parallel training in multi-GPU / multi-node environments.

  • Tiny CUDA NN: Modulus Sym now offers several Tiny CUDA NN architectures which are fully fused neural networks. These models provide a lightweight, heavily optimized implementation which can improve computation performance. Tiny Cuda NN combined with meshless finite derivatives can yield significant speed up over vanilla physics-informed implementations.

  • CUDA Graphs: Modulus Sym now leverages CUDA graphs to record the series of CUDA kernels used during a training iteration and save it as a single graph that can then be replayed on the GPU as opposed to individual launches reducing CPU launch latency bottlenecks.

  • Geometry Module Refactor: The geometry module inside of Modulus Sym has been refactored to improve point sampling performance for both continuous and tessellated geometries. This greatly reduces the initial overhead of creating training/testing datasets from complex geometries.

New features/Highlights v22.03

New Network Architectures

  • Physics inspired Neural Network model that uses global convolutions in spectral space as an inductive bias for training Neural Network models of physical systems. It incorporates important spatial and temporal correlations, which strongly govern the dynamics of many physical systems that obey PDE laws.

  • PINO is the explicitly physics-informed version of the FNO. PINO combines the operator learning and function optimization frameworks. In the operator learning phase, PINO learns the solution operator over multiple instances of the parametric PDE family.

  • An adaptive FNO for scaling self-attention to high resolution images in vision transformers by establishing a link between operator learning and token mixing. AFNO is based on FNO which allows framing token mixing as a continuous global convolution without any dependence on the input resolution. The resulting model is highly parallel with a quasi-linear complexity and has linear memory in the sequence size.

  • A DeepONet consists of two sub-networks, one for encoding the input function and another for encoding the locations and then merged to compute the output. Using inductive bias, DeepONets are shown to reduce the generalization error compared to the fully connected networks.

Modeling Enhancements

  • Two equation turbulence: Solution to two equation turbulence (k-epsilon & k-omega) models on a fully developed turbulent flow in a 2D channel case using wall functions. Two types of wall functions (standard and Launder-Spalding) have been tested and demonstrated on the above example problem.

  • Exact boundary condition imposition: A new algorithm based on the theory of R-functions and transfinite interpolation is implemented to exactly impose the Dirichlet boundary conditions on 2D geometries. In this algorithm, the neural network solution to a given PDE is constrained to a boundary condition aware and geometry aware ansatz, and a loss function based on the first-order formulation of the PDE is minimized to train a solution that exactly satisfies the boundary conditions.

Training features

  • Support for new optimizers: Modulus Sym now supports 30+ optimizers including the built-in PyTorch optimizers and the optimizers in the torch-optimizer` library. Includes support for AdaHessian, a second-order stochastic optimizer that approximates an exponential moving average of the Hessian diagonal for adaptive preconditioning of the gradient vector.

  • New algorithms for loss balancing: Three new loss balancing algorithms, namely Grad Norm, ReLoBRaLo (Relative Loss Balancing with Random Lookback), and Soft Adapt are implemented. These algorithms dynamically tune the loss weights based on the relative training rates of different losses. Also, Neural Tangent Kernel (NTK) analysis is implemented. NTK is a neural network analysis tool that indicates the convergent speed of each component. It will provide an explainable choice for the weights for different loss terms. Grouping the MSE of the loss allows computation of NTK dynamically.

  • Sobolev (gradient-enhanced) training: Sobolev training of neural networks solvers incorporate derivative information of the PDE residuals into the loss function.

  • Hydra Configs: A big part of model development is hyperparameter tuning that requires performing multiple training runs with different configurations. Usage of Hydra within Modulus Sym allows for more extensibility and configurability. Certain components of the training pipeline can now be switched out for other variants with no code change. Hydra multi-run also allows for better training workflows and running a hyperparameter sweep with a single command.

  • Post-processing: Modulus Sym now supports new Tensorboard and VTK features that will allow better visualizations of the Model outputs during and after training.

Feature Summary

  • Improved stability in multi-GPU/multi-Node implementations using linear-exponential learning rate and utilization of TF32 precision for A100 GPUs

  • Physics types:

    • Linear Elasticity (plane stress, plane strain and 3D)

    • Fluid Mechanics

    • Heat Transfer

    • Coupled Fluid Thermal

    • Electromagnetics

    • 2D wave propagation

    • 2 Equation Turbulence Model for channel flow

  • Solution of differential equations:

    • Ordinary Differential Equations

    • Partial Differential Equations

      • Differential (strong) form

      • Integral (weak) form

  • Several Neural Network architectures to choose from:

    • Fully Connected Network

    • Fourier Feature Network

    • Sinusoidal Representation Network

    • Modified Fourier Network

    • Deep Galerkin Method Network

    • Modified Highway Network

    • Multiplicative Filter Network

    • Multi-scale Fourier Networks

    • Spatio-temporal Fourier Feature Networks

    • Hash Encoding Network

    • Super Resolution Net

  • Neural Operators

    • Fourier Neural Operator (FNO)

    • Physics Informed Neural Operator (PINO)

    • Adaptive Fourier Neural Operator (AFNO)

    • DeepONet

  • Other Features include:

    • Global mass balance constraints

    • SDF (Signed Distance Function) weighting for PDEs in flow problems for rapid convergence

    • Exact mass balance constraints

    • Exact boundary condition imposition

    • Global and local learning rate annealing

    • Global adaptive activation functions

    • Halton sequences for low discrepancy point cloud generation

    • Gradient accumulation

    • Time stepping schemes for transient problems

    • Temporal loss weighting and time marching for continuous time approach

    • Importance Sampling

    • Homoscedastic task uncertainty quantification for loss weighting

    • Exact boundary condition imposition

    • Sobolev (gradient-enhanced) training

    • Criteria based training termination

    • Utilities for Nondimensionalization

    • Causal weighting scheme

    • Selective Equation Term Suppression

    • FuncTorch Integration

    • L2-L1 loss norm decay

    • Meshless Finite Differentiation

    • CUDA Graphs Integration

    • Loss balancing schemes:

      • Grad Norm

      • ReLoBRaLo

      • Soft Adapt

      • NTK

    • Parameterized system representation for solving several configurations concurrently

    • Transfer learning for efficient surrogate based parameterizations

    • Polynomial chaos expansion method for accessing how the model input uncertainties manifest in its output

    • APIs to automatically generate point clouds from boolean compositions of geometry primitives or import point clouds for complex geometry (STL files)

    • STL point cloud generation from superfast ray tracing method with uniformly emanating rays using Fibonacci sphere. Points categorized as inside, outside and on the surface, SDF, and its derivative calculation

    • Logically separate APIs for physics, boundary conditions and geometry consistent with traditional solver datasets

    • Support for optimizers: Modulus Sym supports 30+ optimizers including the built-in PyTorch optimizers and optimizers from the torch-optimizer library. Support for AdaHessian optimizer

    • Hydra configs to allow for easy customization, improved accessibility and hyperparameter tuning

    • Tensorboard plots to easily visualize the outputs, histograms, etc. during training

Known Issues

  • Tiny CUDA NN models are only supported on Ampere or newer GPU architectures using the Docker container.

  • Multi-GPU training not supported for all use cases of Sequential Solver.

? Copyright 2023, NVIDIA PhysicsNeMo Team. Last updated on Mar 18, 2025.
苏打水什么牌子的好 4.8什么星座 白细胞2个加号是什么意思 中位生存期什么意思 什么玉便宜又养人
鼻涕黄粘稠是什么原因 共情能力是什么意思 宝宝手脚冰凉是什么原因 肾素低说明什么 腿部抽筋是什么原因引起的
声情并茂的意思是什么 白炽灯是什么灯 指控是什么意思 麻批是什么意思 乌托邦是什么
心火旺喝什么茶 研讨会是什么意思 腹部左侧是什么器官 不食人间烟火是什么意思 尿胆原高是什么原因
子宫内膜厚有什么影响hcv8jop5ns4r.cn 梦见自己结婚是什么意思hcv9jop5ns6r.cn 吴亦凡演过什么电影ff14chat.com 女人什么时候是排卵期hcv9jop0ns2r.cn 唇亡齿寒什么意思bysq.com
鸡血藤手镯有什么功效1949doufunao.com 白细胞数目偏高是什么意思dajiketang.com 10015是什么电话hcv7jop5ns0r.cn 好难过这不是我要的结果什么歌hcv9jop1ns2r.cn 什么样的肚子疼是癌hcv8jop9ns0r.cn
93年的鸡是什么命clwhiglsz.com 怕热是什么原因bjhyzcsm.com 红花泡脚有什么好处hcv9jop8ns3r.cn 2021年属什么hcv7jop6ns7r.cn 押韵什么意思hcv8jop0ns1r.cn
洋溢着什么样的笑容hebeidezhi.com 小孩改姓需要什么手续hcv8jop9ns6r.cn 苔菜是什么菜图片xjhesheng.com 舒张压偏低是什么原因fenrenren.com 额头容易出汗是什么原因hcv7jop6ns5r.cn
百度